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1. Introduction

One of the biggest challenges remaining for early universe cosmology is to find a compelling

explanation for inflation, or rather, an explanation for the initial perturbation spectrum

of our universe, as inferred from the microwave background. Until recently, models for in-

flation were somewhat empirically motivated, using various phenomenological scalar fields,

with parameters almost as fine tuned as those initial conditions inflation was designed to

circumvent [1]. In the past few years, string theory has entered the fray of finding a con-

vincing arena for inflationary cosmology. In the past, applying string theory to the early

universe was beset by many problems, not least that of stabilising moduli [2]. String theory

is set most naturally in more than four dimensions, and the challenge is to explain why we

do not see those extra dimensions. Nonetheless, applying stringy ideas to the early universe

has led to many interesting ideas, such as a possible explanation of the dimensionality of

spacetime, [3], resolutions of the initial singularity via duality [4], and the idea that we do

not see the extra dimensions because we are confined to live on a braneworld [5, 6].
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Whether or not we live on a brane, stabilising extra dimensions is very much an issue,

and early on it was realised in supergravity that fluxes living in the extra dimensions could

stabilise the compactification [7]. In fact, this idea has been used to attempt to tune the

cosmological constant in braneworld models [8]. Meanwhile, in string theory, the AdS/CFT

correspondence [9] has driven an exploration of new supergravity backgrounds, dual to

various gauge theories, several of which have the supergravity D-brane sources replaced by

fluxes on the background manifold [10, 11]. The effect of these fluxes is to replace the AdS

horizon typically present in the supergravity D-brane solution by a smooth throat, which, in

the Klebanov-Strassler [11] case, smoothly closes off the geometry. Given the relation, [12],

between the AdS/CFT correspondence and the Randall-Sundrum [13] braneworld model,

it is natural that a neat description of hierarchies in flux compactifications in string theory

should use the concept of warping [14].

Most recently, many of these ideas have dovetailed together in what is dubbed the

KKLT scenario [15]. Although this description is inherently stringy, it also corresponds

to concrete supergravity realisations, and can therefore be used as a setting for exploring

possible braneworld cosmologies. For example, the early brane inflation models [16] can be

set in this context to get stringy brane inflation, as in [17]. In these scenarios, the brane

location on the internal manifold is promoted to a scalar field in our effective cosmology,

hence motion on the internal manifold is key to determining the dynamics of inflation.

Indeed, the warping induced by the stabilising fluxes plays a crucial role in providing a

sufficient period of inflation: it reduces the size of parameters related to the inflationary

potential, rendering it flat enough to satisfy the slow roll conditions.

A D-brane or anti-brane wandering on a warped throat experiences another interesting

effect, namely the existence of a “speed limit” [18] on the motion of the brane which results

from a constraint imposed by the non-standard form of the DBI brane action. This means

that the contribution of the kinetic terms can become negligible compared to the potential

terms in the brane action, which then dominate and can drive inflation. Besides the

potential cosmological applications of this effect, it is interesting to explore the effects of

a non-standard DBI brane action for the trajectories of branes in warped backgrounds in

more generality.

One key lesson learned from empirical braneworld models, such as Randall-Sundrum,

is that brane cosmology is achieved by having branes moving in a curved background

spacetime [19], indeed, in the case of the RS model, the cosmological problem can be

completely and consistently solved for the brane and bulk, as the system is integrable, [20],

giving rise to a “non-conventional” Friedman equation on the brane [21]. Unfortunately,

this beautiful simplicity is destroyed by the addition of extra fields, [22], or extra co-

dimensions [23], such as would be present in a stringy compactification. Nonetheless, the

mirage approach to brane cosmology, [24] is a fascinating proposal in which we ignore the

full gravitational consistency of a particular moving brane solution (somewhat justified

in the case of a single brane for which the supergravity solution is somewhat suspect in

any case unless at distances larger than the compactification scale) and simply lift the

concept of cosmology as motion to higher codimension. In this picture, our Universe is a

probe brane moving in some supergravity background, and the induced metric in the four
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non-compact dimensions is therefore time dependent by virtue of this motion. This time

dependent metric therefore has the interpretation of a cosmology, and the effective energy

momentum (given by computing the Ricci curvature of this induced metric) is the mirage

matter source on the brane. This picture — defined and developed in [24] — has been the

basis for much work on probe-brane cosmology in string theory.

The key feature of probe brane (or indeed interacting brane) calculations is that the

location of the brane on the compact manifold acts as a four-dimensional scalar field in

our non-compact four-dimensional Universe. This scalar field has a well prescribed action

(in the probe brane case) given by the Dirac-Born-Infeld action for the kinetic terms, and

a Wess-Zumino term [25]. These together give an attractive potential in the case of an

anti-D3-brane, such as the KKLMMT model [17], or a velocity dependent potential in

the case of a D3-brane [18]. In many ways, this latter case is reminiscent of the ideas of

kinetic inflation [26]. The idea is to use the motion of the wandering brane on the internal

manifold to generate cosmological evolution, or (equivalently) to use the additional energy

momentum of the brane as a cosmological source, and analyse the importance of stringy

features, such as the DBI action, or particular warped backgrounds, such as the Klebanov-

Tseytlin (KT) [10] or Klebanov-Strassler (KS) [11] throats.

The KT and KS solutions are based on the conifold background of string theory [27].

The Klebanov-Tseytlin solution describes a singular geometry produced by N D3-branes

and M D5-branes wrapping a (vanishing) 2-cycle of the conifold (fractional D3-branes).

The Klebanov-Strassler solution is a smooth supergravity solution in which the conifold

base of KT has been replaced by the deformed conifold (see [27]), giving a differential

warping in the internal ‘angular’ directions of the space. Both metrics asymptote anti-de

Sitter space in the UV, are equivalent at intermediate scales, but in the IR the KT solution

has a singularity at its tip, whereas KS rounds off smoothly (see figure 9).1

Probe brane analysis with an eye on possible cosmological applications, initiated by

the mirage work [24, 28], was started in the context of warped compactifications in [29],

where a D3-brane moving radially on the KS background was analysed. The key discovery

was that the brane ‘bounced’ (i.e. simply fell to the bottom of the throat and came back

out again) and hence the cosmology passed from a contracting to an expanding phase.

This gives an alternative realisation to earlier superstring cosmology ideas [4], which also

featured an initial singularity avoiding bounce. Note, this bounce is quite distinct from

the “Big Crunch — Big Bang” type of bounce typical of colliding brane scenarios [30],

in which there is an issue, yet to be satisfactorily resolved, of continuation through the

singular collision [31], which is vital to obtaining the correct cosmological perturbation

spectrum.

Further work on cosmological branes has attempted to take backreaction into ac-

count [32] (although the validity of any supergravity approach at small scales is prob-

lematic). For example, in [18] (see also [36]), standard gravitational couplings of the brane

scalar field were considered, and candidate potential terms for the scalar field. In most

1These explicit solutions are of course not compact, however, they are regarded as good approximatations

in the infrared to warped throat regions of the compact Calabi-Yau (CY) 3-manifold, and therefore reliable

solutions below some large value of the internal radial coordinate [14].

– 3 –



J
H
E
P
0
4
(
2
0
0
7
)
0
2
6

cases, a radial motion of the brane is considered, i.e. the brane simply moves ‘up’ or ‘down’

the warped throat. However, since the internal manifold has five other internal dimensions,

it is natural to consider the effect of angular motion on the brane (as originally anticipated

in [24]). Typically, angular momentum gives rise to centrifugal forces, hence we might

expect brane bouncing to be ubiquitous for orbiting branes. Indeed, in [33] it was argued

that this was the case by considering a (Schwarzschild) AdS5×S5 background. Also, in the

case of Branonium [34], a bound state of an orbiting anti-D3-brane, angular momentum

was crucial in obtaining this (unstable) bound state. (See also [35].)

The aim of the present work is to extend previous analyses and study the effects of

angular momentum on the probe brane motion specifically in warped Calabi-Yau throats.

Recall that the location of the brane on the internal manifold will become the inflaton in a

fully realistic description of brane cosmology. However, because the angular directions in

the internal manifold correspond to Killing vectors of the geometry, the angular variables

per se are not dynamical variables from the 4D cosmological point of view. Thus, the

inflaton in our models is precisely the same as the inflaton in the KKLT-based models,

what is new is that angular momentum provides additional potential terms for the inflaton.

So far, angular motion has only explicitly been considered for the case of an AdS5 × S5

background [37], or the AdS-Schwarzschild5 × S5 [33], although in [37] the slow motion

(i.e. non DBI) approximation in a KS throat was considered. The KS throat already

exhibits a bouncing universe, but we expect angular momentum to induce a bounce at a

larger value of the scale factor. We are also interested in whether there are any qualitatively

new features for orbiting branes, for example, the branonium is a rather different qualitative

solution for an anti-D3 brane to the inflationary solution of KKLMMT.

We find a resounding affirmative outcome to these two investigations. As with Germani

et al. [37], we find that the effect of orbital motion in the DBI action is to slow down the

brane radial velocity. This slowing is crucial for having bounces as used in their slingshot

scenario. However, more interestingly we find qualitatively new behaviour for orbiting

branes, which can now have bound states in the IR region of the KS and KT throats. We

stress that these are branes and not anti-branes, hence quite distinct from the branonium

set-up. These solutions have the cosmological interpretation of cyclic universes (though

without the big bang collision of the more controversial cyclic scenario [38]).

The organisation of the paper is as follows. In the next section we present the general

set up we are considering. We derive the Hamiltonian for the brane (or antibrane) moving

on a generic background. We also discuss the qualitative brane motion, and the effect of

angular momentum. We then turn to three main examples of brane motion. In section

three, we analyse brane motion in anti-de Sitter space as a warm up exercise. In sections

four and five, we then turn to explicit SUGRA backgrounds which modify the IR behaviour

of the AdS spacetime: the (singular) Klebanov-Tseytlin (KT), and the (regular) Klebanov-

Strassler (KS) metrics. The main result we find is that angular momentum introduces

additional turning points in the radial motion of the brane — allowing for bouncing, or no

big bang cosmologies. This result is no surprise, after all, angular momentum generically

introduces centrifugal barriers. However, what is surprising is that we find regions of

parameter space where bound orbits can occur — i.e. cyclic cosmologies. We show that
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there are bound states of the D3 probe brane in the KS background which correspond

to cyclic cosmologies. In the final section we summarize and comment on the effect of

back-reaction.

2. Probe brane analysis: general set up

In this section we derive the general action and equations of motion for a probe D3 or anti-

D3-brane moving through a type IIB supergravity background describing a configuration of

branes and fluxes. A probe brane analysis is self consistent when we consider a single brane

moving in a background made by a large numbers of other branes. Our approximations are

valid provided we remain both within the string perturbation theory regime, i.e. the string

coupling gs(r) = gs eφ(r) is everywhere small, and within the supergravity limit, i.e. in

regimes of small curvatures. In our case, this is true provided the number of branes and/or

fluxes in the background is large enough, so that the curvatures are kept small. We will

make this statement precise in the particular examples we consider in the next sections.

We start by specifying the Ansatz for the background fields we consider, and the form

of the brane action. We are interested in compactifications of type IIB theory, in which

the metric takes the following general form (in the Einstein frame)

ds2 = h−1/2 ηµν dxµdxν + h1/2 gmndymdyn . (2.1)

Here h is the warp factor, which in the examples we are considering, depends only on a

single, radial, combination of the internal coordinates ym, dubbed η. The internal metric

gmn depends on the internal coordinates ym, however, this dependence is consistent with a

compact ‘angular’ symmetry group of the underlying spacetime, so that particle or brane

motion has conserved angular momenta. The field strengths that can be associated with

a metric of this form are F1, F3, H3 and F5. These fields have only internal components,

apart from F5, which can assume the form

F5 = dC4 = g−1
s dh−1 ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3 + dual.

Besides these fields, the dilaton can also be active and in general is a function of the radial

coordinate only, φ = φ(η).

We now embed a probe D3-brane (or an anti-brane) in this background, with its four

infinite dimensions parallel to the four large dimensions of the background solution. The

motion of such a brane is described by the sum of the Dirac-Born-Infeld (DBI) action and

the Wess-Zumino (WZ) action. The DBI action is given, in the string frame, by

SDBI = −T3 g−1
s

∫

d4ξ e−φ
√

−det(γab + Fab) , (2.2)

where Fab = Bab + 2πα′ Fab, with B2 the pullback of the 2-form field to the brane and F2

the world volume gauge field. γab = gMN ∂ax
M∂bx

N , is the pullback of the ten-dimensional

metric gMN in the string frame. Finally α′ = `2
s is the string scale and ξa are the brane

world-volume coordinates.
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This action is reliable for arbitrary values of the gradients ∂ax
M , as long as these

are themselves slowly varying in space-time, that is, for small accelerations compared to

the string scale (alternatively, for small extrinsic curvatures of the brane worldvolume).

In addition, recall that the string coupling at the location of the brane should be small,

i.e. gs ¿ 1.

The WZ part is given by

SWZ = q T3

∫

W

C4 , (2.3)

where W is the world volume of the brane and q = 1 for a probe D3-brane and q = −1 for

a probe anti-brane.

We are interested in exploring the effect of angular momentum on the motion of the

brane, and therefore assume that there are no gauge fields living in the world volume of

the probe brane, Fab = 0. For convenience we take the static gauge, that is, we use the

non-compact coordinates as our brane coordinates: ξa = xµ=a. Since, in addition, we are

interested in cosmological solutions for branes, we consider the case where the perpendicular

positions of the brane, ym, depend only on time. Thus

γ00 = g00 + gmnẏmẏn h1/2 = −h−1/2
(

1 − hv2
)

(2.4)

and Bab = 0. Hence

SDBI = −T3 g−1
s

∫

d4x e−3φ
√

1 − h v2 . (2.5)

in the Einstein frame.2

Finally, summing the DBI and WZ actions, we have the total action for the probe

brane

S = −T3g
−1
s

∫

d4xh−1
[

e−3φ
√

1 − h v2 − q
]

. (2.6)

This action is valid for arbitrarily high velocities. Note, the expression for the brane

acceleration, as defined in [18], is

a
√

α′ = h
1

4

d

dt

(

h
1

2 v
)

(2.7)

we recall that this has to be small compared to the string scale for the configurations we

are going to analyse. This can be simplified using (2.17), to:

a
√

α′ = h
1

4

d

dt

(

hε (hε + 2q)

(hε + q)2

)
1

2

=
2h′h

1

4 ε

(εh + q)2
η̇

=
2h′h

1

4 ε(gηη)1/2

(εh + q)3
[

ε (hε + 2q) − `2(η)
]1/2

. (2.8)

2In D dimensions, to change from the string frame to the Einstein frame, we have to make the transfor-

mation GEin

µν = e−λφGstr
µν where λ = 4/(D − 2) and we are defining the string frame such that the action

scales as Sstr ∼ e−2φ(R + . . .)
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2.1 Brane dynamics and the effect of the angular momentum

The above action can be interpreted as describing the dynamics of a particle of mass m

moving in the internal transverse space dimensions, with Lagrangian3

L = −m h−1
[

√

1 − h v2 − q
]

. (2.9)

Here, m = T3 V3g
−1
s , and V3 =

∫

d3x is the volume of the D3 brane. The non canonical

form of the kinetic terms has interesting effects for the dynamics of the brane, especially in

the regime where the warp factor h is large. Indeed, the quantity 1−hv2 ≥ 0 must remain

positive in order to have a real Lagrangian, and this imposes a bound on the brane “speed”

v. Note that while the brane speed depends on both the radial and the angular coordinates

of the manifold, it is only the radial coordinate η, and its velocity that is of cosmological

importance, since that is what becomes the inflaton. Therefore, in what follows, we focus

on the properties of the radial velocity.

The aim of the present work is to investigate some consequences of the DBI-form of

the Lagrangian when we allow the brane to move along the internal ‘angular’ directions.

Clearly, there will be conserved angular momenta:

lr ≡ 1

m

∂L
∂ẏr

=
grs ẏs

√
1 − hv2

, (2.10)

corresponding to the conserved quantum numbers of the symmetry group (here, the latin

indices r, s refer only to angular coordinates, whereas the latin indices m,n refer to all the

internal coordinates). In addition, the energy (per unit mass), defined from the Hamiltonian

of the system is conserved, and defined by

ε ≡ E

m
= ρη η̇ + lr ẏr − L

m
. (2.11)

where ρη is the canonical momentum associated to the radial coordinate

ρη =
gηη η̇√
1 − hv2

. (2.12)

Thus the velocity is

v2 = gηη η̇
2 + grsẏ

rẏs . (2.13)

Using (2.10), the expression for the velocity can be rewritten as a function only of the

coordinate η,

v2 =
gηη η̇

2 + `2(η)

1 + h`2(η)
, (2.14)

where

`2(η) = grslrls . (2.15)

3From now on, we concentrate on backgrounds where the ten dimensional Einstein and string frames

coincide (φ =const.). More general cases can be straightforwardly included.
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This expression implies that the requirement 1 − hv2 > 0 leads to a bound on the radial

velocity, independent of the angular momenta,

h gηη η̇
2 < 1 . (2.16)

This constraint on η̇ implies that in regions where h becomes large, the brane decelerates.

Moreover, as we now discuss, conservation of energy imposes a different constraint on η̇

that depends on the size of the angular momenta.

Using (2.9) and (2.10) the energy of the system can be rewritten as:

ε =
1

h

(

1√
1 − hv2

− q

)

≥ 0 . (2.17)

Notice that this quantity is always positive, the inequality being saturated when the ve-

locity, v, is zero for branes (q = 1), as expected. Notice also that the energy increases as

one approaches the speed limit hv2 = 1. Using (2.14), we obtain the energy as a function

of η, η̇, and the angular momenta:

ε =
1

h

(
√

1 + h`2(η)

1 − h gηη η̇2
− q

)

. (2.18)

Alternatively, for a given energy, ε, we can write the radial velocity as

η̇2 =
gηη [ε(h ε + 2q) − `2(η)]

(h ε + q)2
. (2.19)

Equation (2.19) shows that the angular momentum has the effect of reducing the radial

velocity of the brane, since the terms proportional to the angular momentum appear with

a minus sign. The angular momentum provides a new way to slow the radial motion of

the brane, in addition to that identified in [18]. Interestingly, when angular momentum is

switched on, there is the possibility that the radial speed of a brane (with q = 1) vanishes

at finite values of the radial coordinate η, allowing for a bouncing behaviour. We analyse

in specific examples how the angular momentum affects the radial motion of the brane in

the background, in particular, we focus on examples of brane trajectories with bounces and

cycles that are absent when the angular momentum is switched off.

Using (2.19), we can implicitly get the time dependent evolution of the brane by

integration:

t − t0 =

∫

dη
(hε + q)

√

gηη [ε(h ε + 2q) − `2(η)]
. (2.20)

For general supergravity backgrounds with generic angular momentum, we cannot solve

for the brane motion analytically, but numerical solutions can be obtained. We can also

extract a great amount of qualitative information from (2.19), which allows us to identify

bouncing or cyclic brane trajectories. A natural way to interpret the motion of the brane

in a given background is obtained by writing eq. (2.19) as

Q(η) ≡ η̇2 =
gηη [ε(h ε + 2q) − `2(η)]

(h ε + q)2
. (2.21)

Thus, the only physical regions where the brane can move with a given velocity η̇, are those

in which Q ≥ 0. Given this (without specifying the background) we can argue that:

– 8 –
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• When the angular momentum vanishes, Q is always positive for a brane (q = 1),

and the inequality saturates only when ε = 0. For an anti-brane (q = −1), on the

other hand, Q ≥ 0 only for hε ≥ 2 The point(s) where this inequality is saturated,

correspond to turning points where the anti-brane stops and bounces.

• Once the angular momentum is turned on, one cannot have solutions with zero energy

ε. Moreover, as we mentioned, the addition of angular momentum has the important

effect of slowing down the radial velocity η̇ of the brane with q = 1, allowing it to

eventually stop and bounce. If there are two zeros of Q between which Q > 0, the

brane oscillates between those turning points forming a cyclic trajectory.

• One expects that near the bouncing points the brane experiences deceleration since

the brane’s radial speed is small near those points. By (2.8), the acceleration of the

brane around the bouncing points is naturally small since η̇ is small there.

It is interesting to note that we can reformulate the previous considerations in a slightly

different language. Rewriting eq. (2.19) in the following form

η̇2 + Veff = 0 , (2.22)

where Q = −Veff and defining

Veff ≡ Vη(η) + Vl(η) = −ε(h ε + 2q) gηη

(h ε + q)2
+

gηη `2(η)

(h ε + q)2
, (2.23)

we can interpret (2.22) as the equation describing the motion of a particle of mass m = 2

and zero energy, in an effective potential given by the sum of a radial, Vη, and an angular,

Vl, potential. We are therefore interested in the physically relevant regions where Veff ≤
0. Notice that the angular part, Vl, has the opposite sign to the radial part, Vη. The

contribution from the angular momentum is a ‘centrifugal’ potential, which contributes

with the opposite sign to the ‘radial’ potential. The turning points correspond to values of

η for which Veff vanishes.

2.2 Induced expansion: a view from the brane

We now explore how an observer on the brane experiences the features described so far,

with respect to the motion of the brane through the bulk. In this section, we provide the

tools for analysing this issue on supergravity backgrounds that satisfy our metric Ansatz.

In general, one finds that the metric on the brane assumes an FRW form, and the evolution

equation for the scale factor can be re-cast in a form that resembles a Friedmann equation.

Indeed, it is well known that the brane motion can be interpreted as cosmological

expansion from a brane observer point of view [24]. The projected metric in four dimensions

is given by

ds2 = h−1/2
(

−(1 − h v2) dt2 + dxidxi
)

= −dτ2 + a2(τ)dxidxi , (2.24)

This metric has precisely a FRW form, with scale factor given by

a(τ) = h−1/4(τ) (2.25)
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and with the brane cosmic time related to the bulk time coordinate by

dτ = h−1/4
√

(1 − h v2) dt . (2.26)

Using this information, we derive an expression for the induced Hubble parameter on the

brane:

Hind =
1

a

d a

dτ
=

1

a

h1/4

√

(1 − h v2)

dη

dt

d a

dη
= −1

4

h−3/4

√

(1 − h v2)

dh

dη

dη

dt
. (2.27)

Using (2.17) and (2.19), we can rewrite the Hubble parameter in terms of all the conserved

quantities in a way that resembles a Friedmann equation:

H2
ind =

(

h′

4h3/4

)2

(hε + q)2 Q =

(

h′

4h3/4

)2

gηη
[

ε (h ε + 2q) − `2(η)
]

, (2.28)

where in the last equality we have used the quantity Q defined in (2.21). Equation (2.28)

suggests that an observer on the brane can experience a bouncing behavior. A bounce

corresponds to a point where the Hubble parameter vanishes for non singular values of the

scale factor. In particular, Hind can vanish:

• When the quantity Q vanishes. Thus, the turning points found in the trajectories in

the previous section provide some of the bouncing points from the brane observer’s

point of view.

• When h′ vanishes. When the metric function has an extremum it provides an addi-

tional possible bouncing point for an observer on the brane. Such points, do not, in

general, correspond to turning points for the brane trajectories from a bulk point of

view, but rather, the motion of the brane through a turning point of h causes the

induced scale factor to experience a bounce.

It is useful to point out that, although an observer on the brane does experience bounc-

ing or cyclic expansions, it does so in a frame that is not the Einstein frame [29]. Indeed,

due to the presence of the warp factor h− 1

2 in front of the four dimensional metric, the

four dimensional Planck scale depends on the position of the brane in the bulk. Neverthe-

less, the frame we are working in has the important feature of being the frame in which

the masses of the fields confined on the brane are constant, in the sense that they do not

depend on the brane position.

In the next sections, we consider some concrete examples where we apply the general

analysis presented in this section. In several situations it is possible to get bouncing as

well as cyclic universes for an observer confined on the brane.

3. AdS throat: a simple example

As a warm up, and to show how our general discussion in the previous section can be

applied, we start by considering, the simple case of an AdS5×S5 background, corresponding
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to the near horizon limit of a stack of N D3-branes. This case has been considered also

in [24, 37]. The 10D metric takes the form

ds2 = h−1/2 dxµ dxµ + h1/2 (dη2 + η2 dΩ2
5) (3.1)

where

h =
λ

η4

with λ = 4π α′2gsN ; dΩ2
5 corresponds to the metric of a round S5 sphere. Studying the

brane trajectory through this background, we find that thanks to the angular momentum,

the brane can experience a bounce, at a location depending on λ, the brane energy and

angular momentum.

3.1 Brane evolution and physical consequences

Consider a probe brane (or antibrane) moving along one of the angular coordinates of the

sphere S5, θ, say, and the radial coordinate η. Thus the velocity takes the form:

v2 = η̇2 + η2 θ̇2 . (3.2)

Using the general equations in section 2.1, the radial velocity (2.22) becomes

Q = η̇2 =
ε(h ε + 2q)

(h ε + q)2
− l2

η2 (h ε + q)2
(3.3)

with h = λ/η4. This expression can be formally integrated in terms of elliptic functions,

however, its form is not particularly illuminating and general features are easily extracted.

The bouncing points in which the quantity Q vanishes are easily found:

η̄2
± =

l2 ±
√

l4 − 8 ε3 λ q

4ε q
. (3.4)

The number of real positive roots depends on the angular momentum, and is different for

a brane q = 1 and an antibrane q = −1, as we now explain.

Brane dynamics (q = 1). In the case of a brane, the number of real, positive roots

of (3.3), depends on the value of the angular momentum. Therefore, there are three different

possibilities for the brane trajectories, which depend on the number of zeros of Q. Such

points correspond to the turning points discussed in section 2.1. For l < lc ≡ (8 ε3λ)1/4,

there are no real solutions to (3.4), thus the radial brane speed is always positive and the

brane can move in the whole AdS geometry. For l = lc, there is a single repeated root

of (3.3) at η̄, and hence a zero of η̇ and η̈. Thus a brane travelling toward the horizon

from the UV region will actually decay into a ‘circular’ orbit at η = η̄. This type of orbital

motion is counter-intuitive from the point of view of standard particle motion, however, it

is simply a consequence of the fact that our kinetic action is DBI, and not the conventional
1
2v2. Finally, for l > lc, there are two positive real roots, η̄±, that is, two turning points.

In this case, a brane coming from infinity toward the horizon is not able to approach closer

– 11 –
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Figure 1: Numerical analysis of the radial velocity, Q, and the Hubble induced parameter H2, for

a brane wandering in an AdS throat geometry. We took α′ = 1, gs N ∼ O(10), and ε = 1. In (a)

we show the evolution of Q as we change the value of the angular momentum. The dashed curve

corresponds to zero angular momentum. The blue line corresponds to the critical value of lc ∼ 6.32,

for which there is only one root at η̄. When the angular momentum is increased beyond this value

this root splits into η̄±, as shown in the plot. In (b) we plot the Hubble parameter induced on the

brane.

than η̄+, where it rebounds back to the UV region. There is also an internal region, η < η̄−,

where a brane can be bounded to travel a maximal distance η̄− away from the horizon,

where it bounces back.

In the vicinity of the turning points, we can find analytic solutions for equation (3.3),

by writing

η(t) ≡ η̄+ + δη(t) (3.5)

and looking for solutions at small δη(t). Expanding (3.3) for small δη yields:

δη̇2 =
4η̄5

+δη
(

λε + η̄4
+

)2

[(

4εη̄2
+ − l2

)

+ 2εη̄+δη
]

. (3.6)

When
(

4 ε η̄2
+ − l2

)

6= 0, we take only the dominant first term inside the squared root

in (3.6). The solution of the equation is

δη(t) =

(

η̄5
+

(

λε + η̄4
+

)2

)2
(

4εη̄2
+ − l2

)2
t2 . (3.7)

from which it is apparent that the solution η(t) has a bouncing behaviour for small t. For
(

4 ε η̄2
+ − l2

)

= 0, we see the orbital relaxation to η = η̄.

In figure 1a we plot the kinetic function, Q, for different values of the angular momen-

tum for the case of a brane (q = 1). When we increase the value of the angular momentum,

one or two turning points arise, located at the positions given in (3.4). The value η = 0,

which corresponds to the horizon of AdS, is not a zero of Q (although it is not clear from

the figure!). However, when the angular momentum gets large enough, the second term in
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Figure 2: Numerical analysis of Q and H2 for a wandering anti-brane in an AdS throat for

different values of the angular momentum. We take the same values as in the previous plot for

the parameters. In (a) we plot the value of Q for increasing values of the angular momentum.

The dashed line corresponds to zero angular momentum. In picture (b) the corresponding Hubble

parameter is shown.

the squared root in (3.4) is negligible and therefore the origin becomes eventually a zero

of the potential, but the brane is confined to move in the region η2 > η̄2 ∼ 2 l2.

Anti-brane dynamics (q = −1). In the case of an antibrane, there is only one real,

positive solution to (3.4). Thus, there is always a turning point and in fact, the antibrane

can only live in the region η ≤ η̄+. This region gets reduced as we increase the angular

momentum, until it eventually disappears completely for very large angular momentum.

In figure 2a we show an explicit numerical example, for the same values of the parameters

as in figure 1, for the case of an antibrane (q = −1).

3.2 Induced expansion: bouncing Universe

The induced expansion in the present simple background, is predicted from our general

discussion in sections 2.1 and 2.2. The form of the induced Friedmann equation in this

case is [24]

H2
ind =

λ1/2

η4

[

ε2λ

η4
+ 2ε q − l2

η2

]

. (3.8)

The induced expansion that a brane (antibrane) observer experiences, can be summarised

as follows.

Moving brane. We have seen that Q has no zeros when l = 0. Since h′ = 0 has no

solutions, we conclude that for zero angular momentum it is not possible to have a bounce.

However, as the angular momentum is turned on, one or two zeros of Q can arise, that is,

there can be up to two turning points, η̄±. Since H2
ind > 0 at infinity and for small values

of η, one concludes that a brane arriving from large values of η will encounter a turning
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point before reaching the AdS horizon, and will bounce back [24, 37]. Since there can be

two zeros, there also exists an internal region where a brane coming from the horizon will

reach a given point and bounce back into the horizon. This behaviour is shown in figure 1b.

Moving anti-brane. The case of the anti-brane is slightly different. There is always one

zero of Q, with or without angular momentum. Given that, H2
ind < 0 at infinity, the only

possible solution is the internal bounce where the antibrane goes back to the horizon. This

behaviour is shown in figure 2b.

Therefore, we conclude that in this simple case, the effect of the angular momentum

is important to allow for a bouncing brane universe. However, a cyclic universe is clearly

not possible. We will see in the next two sections that as soon as one has more complex

backgrounds, the angular momentum gives the new possibility of cyclic universes.

4. Klebanov-Tseytlin background

The first example in which the brane trajectory exhibits a cyclic behaviour is the Klebanov-

Tseytlin background. This is a supersymmetric, singular solution representing the back-

ground associated with N D3-branes and M D5-branes wrapping a two cycle. The addition

of the wrapped D5 branes modifies the warp factor with a logarithmic correction that plays

a crucial role in our search for cyclic trajectories. Apart from cyclic cosmologies, we find

the important feature that large enough angular momenta prevents the brane from falling

into the singularity of the geometry. Although the brane can move toward the singularity,

it bounces back before reaching it returning to the regular region of the geometry.

4.1 The solution

The Klebanov-Tseytlin [10] (KT) flux background describes a singular geometry produced

by a number, N , D3-branes sourcing the self dual RR five form field strength F̃5, and

a number, M , D5-branes wrapping a (vanishing) 2-cycle (these are called fractional D3-

branes). These branes source the RR three form field strength F3 and there is also a

nontrivial NSNS three form field H3. The RR C0 form and the dilaton field φ vanish for

this solution. In order for our probe brane analysis to be valid, we need to have a large

number of D3-branes and D5-branes. Also, in order for the supergravity description to

be valid, we need to have small curvatures. These two things can be realised if we keep

gsN À 1, and work in the string perturbation limit gs < 1.

The complete solution takes the following form [10, 40]

ds2
10 = h−1/2(η) dxµdxµ + h1/2(η)(dη2 + η2ds2

T 1,1) . (4.1)

Here η is the radial coordinate of the internal six dimensional manifold, which is given by

the conifold. This is a six-dimensional cone with base T 1,1, where T 1,1 is an Einstein space

whose metric is

ds2
T 1,1 =

1

9
(g5)2 +

1

6

4
∑

i=1

(gi)2 . (4.2)
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Topologically, this is S2 × S3, and the one-form basis {gi} above is the one conventionally

used in the literature, given in terms of the angular internal coordinates as:

g1,3 =
e1 ∓ e3

√
2

, g2,4 =
e2 ∓ e4

√
2

, g5 = e5 , (4.3)

where,

e1 = − sin θ1 dφ1 , e2 = dθ1 , e3 = cos ψ sin θ2 dφ2 − sin ψ dθ2 ,

e4 = sin ψ sin θ2 dφ2 + cos ψ dθ2 , e5 = dψ + cos θ1 dφ1 + cos θ2 dφ2 , (4.4)

with 0 ≤ ψ ≤ 4π, 0 ≤ θi ≤ π, 0 ≤ φi ≤ 2π. The S2 × S3 topology can now be readily

identified as [40]

S2 : ψ = 0 , θ1 = θ2 , φ1 = −φ2 ; and S3 : θ2 = φ2 = 0 .

The other background fields are given by [10]

B2 =
3 gs M α′

4

[

ln
η

η̃

]

(g1 ∧ g2 + g3 ∧ g4)

H3 = dB2 =
3 gs M α′

4 η
dη ∧ (g1 ∧ g2 + g3 ∧ g4)

F3 =
M α′

4
g5 ∧ (g1 ∧ g2 + g3 ∧ g4)

F̃5 = F5 + ?F5

F5 = B2 ∧ F3 = 27π α′2Neff(η)V ol(T 1,1)

?F5 = dC4 = g−1
s d(h−1) ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3

where the volume of T 1,1 is computed using the metric (4.2) and is given by V ol(T 1,1) =

16π3/27. The functions appearing in the solution are

h(η) =
27π α′2

4 η4

[

gs N +
3 (gs M)2

2π

(

ln
η

η̃
+

1

4

)]

=
c

η4
(1 + b ln η) , (4.5)

Neff = N +
3 (gsM)2

2π
ln

η

η̃
. (4.6)

Here, η = η̃ determines the UV scale at which the KT throat joins to the Calabi-Yau space.

This solution has a naked singularity at the point where h(η0) = 0, located at η0 = η̃e−1/b.

In this configuration, the supergravity approximation is valid when gsM, gsN À 1: in this

limit the curvatures are small, and we keep gs < 1. (By taking the parameter M = 0, one

finds AdS space, without singularities.)

4.2 Brane evolution and physical consequences

We are now ready to study the evolution of our probe (anti-) brane in this background. In

the present solution, the Lagrangian describing this motion is given by (2.9):4

L = −m h−1
[

√

1 − h v2 − q
]

. (4.7)

4Note that since the dilaton is zero for this solution, then the Einstein and string frame coincide.
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The velocity of the brane in the internal space is given by

η̇2 + η2

[

1

9
(ġ5)2 +

1

6

4
∑

i=1

(ġi)2

]

, (4.8)

where, with a slight abuse of notation, that should not generate confusion, we have denoted

ġ5 = ψ̇ + cos θ1φ̇1 + cos θ2φ̇2

and similarly for the other ġi. In general, studying the motion along all the internal

coordinates is not simple, however, without loss of generality, we can concentrate on the

case where the brane moves along one of the cycles of the internal manifold. In particular,

let us consider motion on the S3 cycle, defined by θ2 = φ2 = 0 and take φ1 =constant for

simplicity. In this case (writing θ1 ≡ θ) we obtain:

v2 = η̇2 + η2

[

ψ̇2

9
+

θ̇2

6

]

. (4.9)

Plugging this into the Lagrangian, we see that there are two conserved angular momenta

along ψ and θ. These are

lψ =
η2ψ̇

9
√

1 − h v2
; lθ =

η2θ̇

6
√

1 − h v2
. (4.10)

Defining the angular momentum, l, via

l2 ≡ 9 l2ψ + 6 l2θ , (4.11)

gives the velocity:

v2 =
η2η̇2 + l2

η2 + h l2
. (4.12)

It is clear that when l = 0 we obtain the simple expression v2 = η̇2 and the speed limit in

this case is simply hη̇2 < 1. The canonical momentum associated to η, (2.12), for KT is

given by

ρη =
η̇√

1 − h v2
. (4.13)

Using this information the energy (2.18) takes the form,

ε =
1

h





√

1 + h l2

η2

1 − h η̇2
− q



 , (4.14)

that is, an expression formally identical to the one for the motion in the AdS5 × S5 back-

ground analysed in the previous section, however, note h is different. Consequently, in

terms of h, the expression for the time derivative of η, (2.19), in the present case takes the

familiar form:

η̇2 =
ε(εh + 2q) − l2/η2

(hε + q)2
= Q . (4.15)
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Figure 3: Plot of h(η) given by eq. (4.5). In the plot we take α′ = 1 and gsM , gsN ∼ O(10). The

point η = η0 corresponds to the singularity, where h vanishes. The maximum of h, is located at the

point η′, defined by h′(η′) = 0.

We are interested in those regions of the space where Q ≥ 0, therefore, we can simply look

at the behaviour of

ε(ε h + 2q) − l2

η2
≥ 0 . (4.16)

Since h(η) is more complicated than before, this is no longer as amenable to analytic

analysis and we must proceed numerically. Of particular interest are those points where

Q = 0, where we have turning points for the brane (anti-brane). At such values, the brane

typically stops and bounces. The number of zeros of (4.15) is obtained by looking at the

solutions to

ε2h − l2

η2
= −2ε q , (4.17)

which are easily obtained by looking at its asymptotic behaviour, and the form of the

function h.

In what follows, we illustrate trajectories for a brane or anti-brane as it moves in a

specific KT background, which is representative of the types of behaviour one can ob-

tain. Figure 3 shows the warp factor h(η) for the representative values of the parameters:

gsN, gsM ∼ O(10), α′ = 1. It is important to notice that this function has a zero (the

location of the singularity) at the position η = η0. Moreover, h has a maximum at the

point η′ > η0, where the derivative dh/dη = h′ = 0. This fact will become important in

the next subsection, when we discuss the induced time dependent expansion on the brane.

Dynamics of a brane (q = 1). We start our discussion with the case of a brane (q = 1)

moving in the KT background. In figure 4, we show the behaviour of Q for a probe brane

with fixed energy, ε = 1, for the same values of M , N as in figure (3). We show explicitly

how Q, and consequently the brane trajectories, vary as we change the angular momentum.

The general features of the motion of a brane with angular momentum in the KT throat

are summarised as follows:
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Figure 4: Q(η) in the KT background for various angular momenta. We take gsM , gsN ∼ O(10),

α′ = ε = q = 1. The dashed line represents the value of Q for zero angular momentum. The value

of l where a second zero of Q first appears, for the choice of parameters given, is lc ∼ 10.84. The

position of the first zero of Q, can be seen by zooming into the plot for small values of η. ¿From

here, it is clear that η0 < η̄1, where η0 is the position of the singularity, h(η0) = 0.

Figure 5: Large η behaviour of Q in the KT background for the same values of the parameters as

in figure (4). The thin blue line corresponds to the metric function h, as indicated in the figure.

• l = 0. For vanishing angular momentum, (4.15) becomes

h + 2

(h + 1)2
= Q , (4.18)

(recall that we are taking ε = 1). Therefore, at the singularity η0 (h = 0), and also at

large η (h → 0) we have that Q = 2. For intermediate η, the radial speed decreases

to a minimum value, defined by Q′ = 0, where Q′ = dQ/dη = −h′(h + 3)/(h + 1)3.

There are no turning points of brane motion in this case, i.e. solutions to Q = 0.

Physically, this implies that a brane coming from the far UV region will not be able

to escape from falling into the singularity of the KT geometry at some finite time,

although its velocity will damp to a minimum at η′. As we now discuss, this can be

avoided by turning on angular momentum.
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• l 6= 0. As the angular momentum is turned on, several qualitatively new phenomena

can occur. First of all notice that

Q =
h + 2 − l2/η2

(h + 1)2
, (4.19)

therefore at the singularity Q(η0) = 2 − l2/η2
0 . It is clear that as soon as we take,

l2 > l2min = 2 η2
0 , Q(η0) < 0 at the singularity, hence the singularity is now in a

kinetically forbidden region. On the other hand, since Q → 2 for large values of η,

independent of the angular momentum (see figure 5), we conclude that Q has to cross

zero at least once between the singularity and infinity. In other words, for generic

values of the angular momentum, there is at least one point, η̄1 > η0, where the radial

brane speed becomes zero, Q = 0. Therefore, a brane coming from the UV region

will bounce back before reaching the singularity.

The points where the radial brane speed vanishes are determined by the equation

G(η) = 2η4 − l2η2 + c(1 + b ln η) = 0 . (4.20)

This equation can have a maximum of three (real positive) zeros. The position and

number of such zeros depends on the value of the angular momentum.5

We can thus have three different situations, depending on the value of the angular

momentum. Let lc be the value of the angular momentum for which an additional

zero of (4.20) appears. For l < lc, there is only one zero6 at η̄1, say. For l > lc,

the second zero η̄ resolves into two different zeros, η̄± say, and we end up with three

zeros. The presence of these turning points is quite interesting as it allows for a

variety of new trajectories that the brane can follow. Also, note that the singularity

of KT is avoided for all these trajectories. These behaviours are important for the

induced expansion, allowing for novel bouncing and cyclic universes. We now turn

to a discussion of the brane physics for these values of the angular momentum.

? lmin < l < lc. In this case, a D3-brane falling into the KT throat decelerates

more rapidly than if it had no angular momentum, and eventually slingshots at

η = η̄1, rebounding back up the throat, without ever reaching the singularity.

? l = lc. In this case, a new zero for the radial speed arises at η̄ = η̄+ = η̄−.

Therefore, a brane coming down the throat asymptotes a steady orbit at that

point. Moreover, a new kind of trajectory is possible. A brane can actually be

in orbit (at η̄) around the KT singularity and fall in towards the conifold tip,

rebound and asymptote its original orbit.

5To see this, note G(η0) < 0 for l > lmin and G → ∞ as η → ∞, thus G has at least one zero. Then,

noting that the turning points of G, G′ = 0, are determined by a quadratic in η2, we see that G can have at

most two turning points, hence at most three zeros. Whether or not G has these additional zeros depends

on the relative magnitudes of l, b, and c. We find that for physically relevant values of b and c, when l

becomes large enough these extra zeros typically appear.
6We will always consider values of l > lmin ≡

√
2 η0, so that η̄1 > η0.
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? l > lc. For larger values of the angular momentum, there are two separate

physical regions for the brane motion. For the region η > η̄+, the brane descends

through the throat, from large to small values of η, slingshotting at η̄+, and

rebounding back toward large values of η. On the other hand, in the region

η̄1 < η < η̄−, a bound state arises, corresponding to the brane oscillating between

these two turning points (see figure 4). The presence of these turning points will

be very important for the induced expansion analysis in the next section, as it

gives rise to cyclic universes.

Dynamics of anti-branes (q = −1). Let us now move on to the case of an anti-brane

moving along the KT throat. This is, in some way, simpler than the brane case, as we now

see. We show this example numerically in figure 6a, for the same values for the parameters

as in figures 3–5.

• l = 0. When no angular momentum is present, Q = (h− 2)/(h− 1)2. Therefore, this

quantity has a singularity at the two points where h = 1. When 1 < h < 2, Q < 0,

and therefore this region is kinetically forbidden. When h > 2, Q becomes positive,

however, for large values of η, it becomes negative (unphysical) again, as Q → −2.

It is clear that Q = 0 has two zeros, corresponding to turning points of the motion,

at the positions where h = 2. The precise location of these is determined by the

equation,
c

η4
(1 + b ln η) = 2 (4.21)

and we call η̄± the positions of these zeros. Of course, the regions beyond the greatest

zero of the equation above are unphysical as Q < 0. Therefore, an antibrane moving

in this background will never have enough energy to escape the “gravitational attrac-

tion” due to the geometry, and will stay in a bound state, bouncing back and forth

between the radii η̄− < η < η̄+, without ever reaching the singularity. In figure 6a,

the zero momentum case is shown in dashed lines.

• l 6= 0. The qualitative behaviour of the anti-D3-brane trajectories when the angular

momentum is turned on is the same as in the zero momentum case. This can be easily

understood since the number of zeros of Q stays the same, although the location

changes, according to the equation

c

η4
(1 + b ln η) − l2

η2
= 2 . (4.22)

In figure 6a, we show how the position of these two zeros changes as we increase the

value of the angular momentum. Therefore, the trajectories of the antibrane are as

before: An anti-brane wandering in the throat of KT, is always constrained to stay

near the throat, oscillating between the two zeros of Q. As we will see in the next

section, this behaviour will be reflected in a cyclic kind of expansion, when seen from

the antibrane observer’s point of view.
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Figure 6: Variation of Q, (a), and H2, (b), for the case of an anti-brane moving in the KT

background. In this case, even for l = 0, the quantity Q has two roots, η̄±. When the angular

momentum is added, the physical region where Q > 0 diminishes, till it eventually disappears.

Notice that for η > η+, where η+ is the biggest root of Q, there is no physical region. In terms of

the Hubble induced expansion, these two roots give only cyclic universes for an antibrane.

4.3 Induced expansion in KT: cyclic/bouncing Universe

The induced expansion that a brane (antibrane) observer experiences as they move in the

KT background provides novel examples of bouncing and, more interestingly, cyclic brane

universes, as we show below. For the KT background, eq. (2.28) becomes

H2
ind =

(

h′

4h3/4

)2 [

ε (h ε + 2q) − l2

η2

]

=

(

h′

4h3/4

)2

(h ε + q)2 Q . (4.23)

As we already mentioned, the angular momentum provides a negative contribution that

can be compared to a positive curvature contribution in the standard FRW cosmology,

thus, one can expect to get bounces once it is nonzero. In fact, the behaviour is far more

interesting. In what follows, we discuss the generic behaviour of a brane/anti-brane moving

in this background and illustrate it with several pictures.

Brane expansion (q = 1). We now analyze the case of a moving brane. The type of

induced expansion that a brane observer will experience is inferred from our previous dis-

cussion on the brane dynamics. We describe each case in detail and again we illustrate our

results graphically with a numerical example. For the brane, the behaviour is graphically

depicted in figure 7.

• l = 0. As we saw in the previous section, the quantity Q is always positive and has

no zeros. However, it is still possible for the cosmological expansion to experience a

bounce if h′ = 0. This happens at only one value of η, η′, where h has a maximum

(see figure 3). Therefore, a brane observer actually experiences a contracting Uni-

verse, as the brane falls towards η′, which then bounces and re-expands, and in fact

hyperinflates toward a final cosmological singularity in finite time.
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Figure 7: Plot of H2(η) given by (4.23) for a brane. In the plot we take the same values for the

parameters as in figure 4. The dashed curve corresponds to zero angular momentum, whereas the

purple corresponds, as indicated, to lc. The value of η̄, where Q = 0 for this curve (see figure 4), is

shown by zooming in on the curves around that point. The point at which h′ = 0 is η′ ∼ 0.8. The

green curve corresponds to l = 19. For this value of the angular momentum, the three first zeros of

H2 are clearly seen. The fourth lies outside the region shown in the plot.

• l 6= 0. In this case, Q can have up to three different roots, depending on the values of

l. Since h′ has a zero at η′, the induced Hubble parameter (4.23) can have a maximum

of four zeros, giving rise to a rich structure. We consider each case separately.

? lmin < l < lc. In this case, H2 has two zeros. One is located at η′ and the

other at η̄1 (one can check that η̄1 < η′). This is also clear from the plot of

H2 in figure 7. Therefore, a brane coming down the throat, will experience a

contracting phase moving to an expanding phase at η′ and then enter another

contracting phase at η̄1, expanding again at η′.

? l = lc. As we increase the angular momentum to the critical value where Q has

two roots, a new zero for H2 arises. Thus there are three turning points where

H2 = 0. In figure 7, we zoom into the region where the zero of Q at η̄ appears.

As we have already remarked, these are two possible brane trajectories. The

first corresponds to a contracting phase (as the brane moves in from the UV)

asymptoting a steady-state Universe orbiting at η = η̄. The other corresponds

to a bouncing Universe, oscillating between contracting and expanding phases.

? l > lc. In this case, there are four turning points, where H2 = 0. This gives

rise, inevitably, to cyclic universes. A brane coming from values of η > η̄+,

will reach the turning point and bounce back to the UV region corresponding

to a contracting/expanding cosmology. However, a brane moving in the region

η̄1 < η < η̄− will experience a multi-cyclic expansion. In figure 8 we plot H2 for

l = 15 where the typical behaviour of the brane evolution along the throat is

clearer.

Anti-brane expansion (q = −1). The situation in the case of a wandering anti-brane is

very simple to understand from the analysis of the trajectories discussed in the last section.
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Figure 8: Plot of H2(η) for l = 15. The position of the three first zeros of H2 are shown. The two

associated cyclic universe regions are shown clearly.

Q has two roots, or turning points, independent of the value of the angular momentum,

which disappear as l becomes too large. Therefore, the induced expansion in this case has

the same qualitative form for l = 0 and l 6= 0. The form of the Hubble parameter for the

antibrane is shown in figure 6b.

As with the brane, there is another solution to H2 = 0 coming from h′ = 0. Therefore,

H2 has a total of 3 zeros, or turning points, as can be seen from figure 6b. Since H2

becomes negative after we reach the (biggest) solution of h = 2 (Q = 0) at η̄+, then, an

antibrane observer will always experience a cyclic expansion, moving, as in the case of the

brane, between the two solutions of Q = 0, without touching the singularity.

5. Klebanov-Strassler background

The last background we study in detail is given by the Klebanov-Strassler geometry, a

regularised version of the KT throat studied in the previous section based on the deformed

conifold. The metric ansatz for this background is slightly more complicated than in

the previous case, allowing for differential warping of the angular coordinates. The brane

trajectories are also rich, exhibiting bouncing and cyclic behaviour, depending on the brane

energy and angular momenta.

5.1 The solution

We now consider the regularisation of the KT solution due to Klebanov and Strassler

(KS) [11]. It describes the geometry due to a configuration of (a large number) N D3-

branes and (a large number) M wrapped D5-branes. A cartoon of the regularisation of the

KT solution is shown in figure 9.
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Figure 9: Cartoon representation of the KS resolution of the KT singular background.

The metric and the other fields are given by

ds2
10 = h−1/2(η) dxµdxµ + h1/2(η)ds2

6 , (5.1)

where the 6D metric is now replaced by that of the deformed conifold (see ref. [39])

ds2
6 =

ε4/3

2
K(η)

[

1

3K(η)3
{

dη2 + (g5)2
}

+ cosh2 (η/2)
{

(g3)2 + (g4)2
}

+ sinh2 (η/2)
{

(g1)2 + (g2)2
}

]

, (5.2)

where the {gi} basis is defined as before and ε is a constant that measures the deformation

of the conifold. The other fields are given by

B2 =
gs M α′

2

[

f(η) g1 ∧ g2 + k(η) g3 ∧ g4
]

,

H3 =
gs M α′

2

[

dη ∧ (f ′(η) g1∧g2+k′(η)g3 ∧ g4)+
1

2
(k(η)−f(η)) g5∧

(

g1∧g3 + g2∧g4
)

]

,

F3 =
M α′

2

[

(1−F (η)) g5∧g3∧g4+F (η)g5∧g1∧g2+F ′(η)dη∧
(

g1∧g3+g2∧g4
)]

,

F̃5 = F5 + ?F5 = B2 ∧ F3 + dC4

dC4 = g−1
s d(h−1) ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3 .

Again, the dilaton and the RR zero form vanish in this solution. The explicit form of the
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functions appearing above is:

F (η) =
sinh η − η

2 sinh η
, (5.3)

f(η) =
η coth η − 1

2 sinh η
(cosh η − 1) , (5.4)

k(η) =
η coth η − 1

2 sinh η
(cosh η + 1) , (5.5)

K(η) =
(sinh (2 η) − 2 η)1/3

21/3 sinh η
, (5.6)

h(η) = (gsMα′)222/3 ε−8/3

∫ ∞

η
dx

x coth x − 1

sinh2 x
(sinh (2x) − 2x)1/3 . (5.7)

Although the integral above, conventionally denoted as I(η), cannot be computed analyt-

ically, one can readily work out the two important limits of the solution as η → 0 and

η → ∞, [11, 40]. One can check that near the bottom of the throat (IR), the internal

metric takes the form of a 3-sphere with finite radius, plus a 2-sphere which shrinks to zero

size. At the other end of the throat (UV), the metric takes the form of the KT solution,

asymptoting AdS spacetime. The relevant limits of the integral above are

I(η → 0) → a0 + O(η2) ; I(η → ∞) → 3 · 2−1/3(η − 1/4) e−4η/3 , (5.8)

where a0 = 0.71805 [40].

5.2 Brane evolution and physical consequences

We are again dealing with a the Lagrangian of the form (2.9) and we take the brane to be

moving along the same cycle as in KT. Therefore the speed in the present case becomes

(θ1 = θ):

v2 = A(η)
[

η̇2 + ψ̇2
]

+ B(η) θ̇2 (5.9)

where

A(η) =
ε4/3

6K2
, B(η) =

ε4/3K

4

[

cosh2 (η/2) + sinh2 (η/2)
]

(5.10)

The two conserved angular momenta along ψ and θ are given by

lψ =
A ψ̇√

1 − h v2
; lθ =

B θ̇√
1 − h v2

, (5.11)

and the canonical momentum associated to η is

ρη =
A η̇√

1 − h v2
. (5.12)

Using this information, the energy (2.18), becomes

ε =
1

h

[
√

1 + h `2(η)

1 − h gηη η̇2
− q

]

(5.13)
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where

`2(η) =
l2ψ
A

+
l2θ
B

. (5.14)

The time evolution of the brane along the radial coordinate η (2.19) is then determined by

η̇2 =

[

ε(h ε + 2q) − `2(η)
]

A(h ε + q)2
= Q . (5.15)

We now study the behaviour of the brane (or anti-brane), as it moves in this back-

ground. We find that, although the motion has many similarities with the KT case, there

are some important differences.

Dynamics of a brane (q = 1). In order to study the form of the brane trajectories in

the KS background, we numerically evaluate the metric function (5.7) for consistent values

of the parameters. We take α′ = 1 and gsM , gsN ∼ O(10), and plot the relevant metric

functions in figure 10. Moreover, note the presence of a gηη = A(η), and the effect of the

differential warping A(η) and B(η). Although these functions become proportional at large

η (B ∝ 3A/4), their precise form at finite values of η, will be important when we turn on

the angular momenta li. Notice that, in contrast with the KT case, h > 0 for all values of

η, and tends to zero for large values of η only. This will have important consequences later.

Let us look in more detail at the brane evolution in the KS background. We concentrate on

the case ε = 1, and show the results for Q as we change the angular momenta in figure 11.

• li = 0. When both momenta are zero, Q becomes

Q =
h + 2

A(h + 1)2
.

Therefore, at η = 0, it has a constant positive value, Q0 = Q(0). Since h ,A > 0,

in this case, Q > 0 for all η values. Therefore a D3-brane is free to move along the

entire geometry without restrictions. It will do so by increasing its radial velocity as

it moves toward the tip of the throat, but decreasing it as it comes closer to it (see

figure 11).

• li 6= 0. As we turn on the angular momentum, the brane’s radial speed decreases

relative to no angular contribution, eventually reaching a zero value for large enough

angular momenta. The turning points where this can happen, are given by the

equation

h − `2(η) = −2 .

Just as in the case of the KT background, one can check that the maximum number

of solutions for this equation is three. In particular, it is the contribution of lθ that

provides a third solution.7 This can be seen from figure 11. Therefore, without loss

of generality, we can extract the most general type of trajectories by concentrating

on the case lψ = 0, lθ 6= 0. The behaviour is very similar to the KT one, with some

interesting differences, which we now describe.

7That is, if lθ = 0, lψ 6= 0 only two solutions are possible. However, if lψ = 0, and lθ 6= 0, a maximum

of three zeros are possible.
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Figure 10: Plot of h(η) given by eq. (5.7), and functions A and B. In the plot we take α′ = 1 and

gsM , gsN ∼ O(10).

Figure 11: The function Q for a brane moving in the KS background as the angular momenta

changes. In picture (a) we keep lθ = 0, and allow lψ to vary, whereas in (b) we keep lψ = 0 and

change lθ. It is clear that in the second case, a second zero can appear near the tip of the deformed

conifold. We took the same values for the parameters as in figure 10 and ε = 1.

? lθ < lc. In this case, there are no solutions to Q = 0, thus, the trajectories are

qualitatively the same as in the zero momentum case, the only difference being

that the radial speed decreases via a centrifugal repulsion.

? lθ = lc. At this point, the equation Q = 0 has a solution at η̄, where the

radial speed and acceleration vanishes. A brane coming from the UV region,

will asymptote a circular orbit at η̄.

? lθ > lc. When the angular momentum is increased above the critical value, three

turning points can appear at η̄1, η̄±, as shown in figure 11b. Therefore, there are

two separate regions where the brane can move. For values of η > η̄+ the brane

coming down the throat, will reach a maximum distance from the tip, where its

radial speed is zero, bouncing back to the region of large η values. Moreover, a

new internal region appears between, η̄1 < η < η̄−, where the brane motion is

bounded, as shown in figure 11.

Dynamics of an anti-brane (q = 1). The case of an antibrane wandering in the

KS throat is very similar to the case of the KT background. The trajectories of the

antibrane behave very similarly, independent of the value of the angular momentum. There
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Figure 12: Induced expansion as seen by a brane observer when the brane moves along the KS

throat. The parameters are chosen as in figure 3. There is always a zero of H at the origin of

the regular KS geometry. We zoom in on the right region where it is clear that the zeros of Q are

located, as we increase the angular momentum. As explained in the text, for lθ > lc there are no

zeros for H apart from the origin. For lθ = lc a new zero arises, at η̄. This zero splits into η̄± as

we increase l above its critical value. For the values of the parameters we are taking on the plot,

lc ∼ 3.764.

is however, a small range of parameters, where a small variation can arise. Let us now study

the trajectories in detail. We concentrate, as in the previous case, only on the case where

lψ = 0, since, as we explained above, it is lθ which provides the rich structure of the

trajectories.

• li = 0. When the angular momenta vanishes, there is a single solution to Q = 0,

that is, h = 2, at η̄, say, as can be seen by the form of h (figure 10). Therefore,

the antibrane is constrained to move in the region between the resolved tip of the

conifold, and η̄. This case is represented in figure 13a by the dashed line. One can

compare this to the KT case in figure 6a.

• lθ 6= 0. When the angular momentum is turned on, the equation Q = 0 implies8

h − l2θ
B

= 2 .

Given the form of h and B, one can easily check that, for generic values of the angular

momentum, there is always one solution, just as in the previous case. However, the

position of the zero of the radial speed shifts to smaller values of η, restricting the

region of solutions for the antibrane trajectories. Also, the value of the radial speed

decreases (see figure 13a). As we increase the value of the angular momentum, the

8Again, adding the other angular momentum, lψ gives the same results and is trivially included.
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radial speed continues to decrease, until, the region where the antibrane can move,

vanishes. As this happens, there is a small range of values of lθ where a bounded

state with small radial speed arises. This happens when the solution to the equation

above has two solutions η̄±. This region will become clearer when we look at the

induced expansion in the next subsection. In figure 13a we show how the antibrane

radial speed changes with the angular momentum (lθ).

5.3 Induced expansion in KS: cyclic/bouncing Universe

The induced expansion that a brane (antibrane) observer experiences in the present case,

can be already intuited using our experience with the AdS and the KT backgrounds.

Using (2.19) and (2.28) in the KS case, we find the effective 4D Friedmann equation:

H2
ind =

(

h′

4h3/4

)2
[

ε (h ε + 2q)

A
−

l2ψ
A2

− l2θ
AB

]

=

(

h′

4h3/4

)2

(ε h + q)2 Q (5.16)

Therefore, just as in the previous two examples (AdS and KT) the angular momentum

provides an important negative contribution to the Friedmann effective equation which

again gives rise to bouncing and cyclic universes. We now consider these solutions in

detail and, as in the previous analysis, we compute numerically a concrete example, which

illustrates our results.

Moving brane. We start with the case of a brane (q = 1). The generic behaviour is

very similar to the KT case. The main difference is that there is no singularity in the

background, and the form of h, and thus h′ changes. We show this case in figure 12.

• li = 0. The vanishing momentum case is shown with a dashed line in figure 7.

Following our general analysis in section 2.2, we know that in order to get bounces,

there should be solutions to H2
ind = 0. For vanishing angular momentum, these

solutions are provided by h′ = 0. In the KS case, this has a single solution at η = 0.

Therefore, there is a single zero for the induced Friedmann equation. Physically,

a brane coming from the UV region of the KS background, arrives at the end of

the throat at η = 0, where it passes through, returning to the UV region along an

antipodal direction. This solution was studied in [29].

• li 6= 0. When the angular momentum is turned on, there is a maximum of three

zeros for Q = 0 at η 6= 0. Besides these, there is the extra zero of h′ at η = 0.

Thus, (5.16) has a maximum of four zeros, which represent bouncing points for the

induced cosmology. As can be seen from figure 12, there are three different situations,

depending on the amount of angular momentum, with similar behaviour to the KT

case.

? lθ < lc. For these values of the angular momentum, the situation is the same

as for the case of no angular momentum, that is the brane experiences a single

bounce at the origin, with H2 reduced relative to l = 0.
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? lθ = lc. When Q has a single zero at η̄, the universe once more asymptotes a

steady state cosmology in orbit at η = η̄.

? lθ > lc. For larger values of li, there are four solutions to H2 = 0: 0, η̄1, η̄±.

Then, two different regions for the brane expansion appear. The brane observer

can either experience a bounce at the largest zero of Q = 0, η = η̄+, or it can

bounce back and forth, between the two smaller zeros of Q = 0, η̄1 ≤ η ≤ η̄−.

Therefore a brane observer will experience a cyclic expansion. (Note that the

region between 0 < η < η̄1 is not physical.)

Moving anti-brane. The case of an antibrane (q = −1) moving in the KS background

may be anticipated from our previous analysis of AdS and KT backgrounds. Indeed the

physical behaviour changes only slightly. We illustrate our results in figure 13b. One can

compare this picture with that of the KT background, figure 6.

• li = 0. For vanishing li, we saw that Q = 0 has always a single solution. Therefore,

H2 = 0 has two solutions. Physically, an antibrane will always experience a cyclic

expansion, bouncing back and forth between zero (where h′ = 0) and the single root

of Q at η̄.

• lθ 6= 0. As we turn on the angular momentum, in general, the trajectories have

the same qualitative behaviour as before. That is, the antibrane experiences a cyclic

expansion. The effect of the angular momentum is to decrease the value of the Hubble

parameter induced on the brane, until the region where H2 > 0 vanishes. Before this

happens, there is a small region of values of the angular momentum, where two roots

of Q appear at η̄±, as we saw before. In those cases, the cyclic brane universe exists

between these two roots of Q, and the region between η = 0 and the smaller root of

Q is not physical.

As it is clear from our discussion, cyclic behaviour is quite generic, once we turn on angular

momentum.

6. Discussion

In this paper, we studied in detail the dynamics of probe D3-branes and antibranes, as they

move along the transverse directions of a warped supergravity background with fluxes. In

particular, we allowed the brane (antibrane) to move in more than one of the transverse

internal coordinates: that is, along angular as well as radial coordinates. In so doing,

we have uncovered interesting novel trajectories that a brane/antibrane can take in these

backgrounds.

We began by considering the pure AdS5 × S5 geometry as a classic and well known

example. This has been analysed in the literature for the case of a moving brane, and

we have completed the picture by including the antibrane. We then modified the back-

ground with the addition of fluxes, considering respectively the Klebanov-Tseytlin and

Klebanov-Strassler backgrounds. Not surprisingly, the dynamics of the brane on these
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Figure 13: The anti-brane kinetic function Q (a) and Hubble induced expansion H2 (b), for the

same values of parameters as in figures 10–12, as the angular momentum lθ changes. In both

pictures, the dashed line corresponds to vanishing angular momentum. The value of the angular

momentum for which a new zero of H arises, for the values we are taking is lθ ∼ 4.02.

three backgrounds presents some similarities, due to the fact that the warping has simi-

lar features in all the three examples. However, a more careful study revealed interesting

differences. These differences are related both to the varying forms of the warp factors in

the three cases, and to the different manifolds in which the angular coordinates are com-

pactified. For a probe brane in the three examples, we found that the type of trajectories

depend crucially on the value of the angular momentum.

It is possible to distinguish between three qualitatively different possibilities for the

brane dynamics. In the first case, the brane moves freely through the whole spacetime,

eventually reaching the tip of the throat (either the AdS horizon, the singularity or the

regularised tip). In the second case, a brane coming from the UV experiences a bounce

that brings it back and does not allow it to approach the tip of the throat. This case is

interesting because it shows that a brane that moves through singular backgrounds, like

the KT, can have regular trajectories that avoid the singular parts of the geometry. In

the last case, the brane is confined to move inside a bounded region, providing a novel

example of cyclic motion inside the throat. For a probe antibrane, the trajectories are

qualitatively independent of the value of the angular momentum in the three examples

that we considered. In the KT and KS geometries, a turning point occurs before the tip

of the throat.

We also studied the brane evolution as seen from the point of view of a brane observer,

or mirage cosmology [24]. The trajectories found suggested the possibility of both bouncing

and cyclic universes. Indeed, for the pure AdS throat, as was shown in [24, 37] for branes,

bouncing universes arise naturally as we turn on the angular momentum, whereas they are

always present for the antibrane.

More interesting are the KT and KS backgrounds where a bouncing universe is always

present. This, as we pointed out in the text, is due to the form of the warp factor. When we

turn on the angular momentum, as well as bouncing, cyclic cosmologies also arise. Although

we have studied three specific backgrounds, we expect the same qualitative behaviour in a
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generic warped compactification. One of the nice features about having cyclic trajectories is

that, whether or not they correspond in the final analysis to cyclic universes (which depends

on the effect of backreaction), the brane experiences successive periods of acceleration

during this motion, which can feed into successive inflationary eras [18].

Our analysis can be extended in several directions, for example, we have not taken into

account any mechanism for the stabilization of the Kähler moduli, and the consequences

of this for the action of the probe brane. This is an important issue for any genuine

cosmological brane scenario in which we would require stabilization of all moduli. Initial

work, [32], indicates that the effect of stabilization is to cause an additional attractive force

towards the tip of the KS throat. Presumably, this will lift the critical values of angular

momentum for which there is sufficient centrifugal repulsion for a bounce in the throat to

occur. We do not expect the qualitative families of trajectories to be altered however. In

particular, we would still expect cyclic trajectories in the stabilized KS throat.

More importantly, we have neglected the gravitational backreaction of the probe brane

in our discussion of cosmology, in other words, we have been taking the mirage point of

view. Although this is one possible way to proceed, it may not be the most satisfactory

one. In the case of a simple codimension one braneworld, such as Randall-Sundrum, the

association between moving branes and cosmology is proven. Because of the symmetry

of the geometry, and hence equations of motion, any isotropic perfect fluid cosmological

source can be added to the brane and fully supported as a solution to the equations of

motion via the Israel equations. However, we already lose this concrete correspondence as

soon as we add one more dimension, even within the supergravity description which, as

we have discussed, is severely limited for the probe brane. Thus, for codimension two and

higher, there is no prescriptive way to add energy momentum to a brane. Given this, it

is difficult to get a concrete formulation of any mirage description as truly corresponding

to a cosmological universe containing real matter, and evolving according to local physical

principles. In fact, the ‘matter’ in the mirage scenario is simply that inferred from applying

the standard Einstein-FRW equations to the induced evolution, and is not the result of

any localised fields on the brane. It is difficult to see how to address problems such as

reheating, particle production, or indeed whether we can get a sensible description of the

standard model on a probe brane.

For this reason, we have discussed the induced cosmology of our brane trajectories in a

somewhat limited fashion, as we do not believe that computation of properties depending

on a particle interpretation (such as the spectral index of perturbations) will be robust

to any mechanism for embedding this interpretation into a more complete gravitational

description. As we have remarked, it appears that it is not possible within the supergravity

approximation to get a truly gravitational description of a moving brane with matter in

more than one codimension (although, see [41] for progress in the case of Gauss-Bonnet

gravity), and given that one of the important novel cosmological predictions of the Randall-

Sundrum model was the addition of ρ2 terms to the Friedman equation, the lack of a

rigorous means to project gravity onto the brane is disappointing from the point of view

of a spacetime picture of string cosmology. However, one can take a more pragmatic

approach to backreaction, and as a first step couple the DBI action we have studied to four
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dimensional gravity along the lines of [42], and analyse the resulting cosmologies as in [18].

A full study of cosmology in this direction is currently underway.

Of particular cosmological relevance is whether the cycling trajectories we have found

in this paper will correspond to cyclic universes in the gravitationally coupled theory. In

fact it is straightforward to show that this is not the case. Computing ρ and p from

the Lagrangian (2.9), even allowing for a possible potential term for the radial variable,

demonstrates that the energy momentum obeys both the weak and null energy conditions,

and hence a cyclic evolution of the scale factor cannot arise. Note that this does not mean

that the brane cannot follow a cycling trajectory in the throat, simply that this cycling

trajectory cannot correspond to a cyclic universe. The addition of the effective Einstein

Hilbert term on the brane breaks the direct correspondence between the scale factor of

the four-dimensional cosmology and the radial position function of the brane. Because of

this, it is possible that a brane could have an epoch of cycling in the throat, before exiting

into the asymptotic regime and standard big bang cosmology. It is interesting that this

simple first step towards gravitational back reaction gives such a radical modification of

the mirage picture, however, it is always possible that higher order corrections may negate

this.

Finally, another interesting issue related to our results is the dual field theory interpre-

tation of the cycling trajectories: this could provide further intriguing connections between

cosmological trajectories and their interpretation in the dual theory.

Acknowledgments

We would like to thank Daniel Baumann, Cliff Burgess, David Mateos, Liam McAllister,

Simon Ross, and Martin Schvellinger for useful discussions. This research was supported

in part by PPARC. DE, RG and GT are partially supported by the EU 6th Framework

Marie Curie Research and Training network “UniverseNet” (MRTN-CT-2006-035863). GT

is also supported by the EC 6th Framework Programme Research and Training Network

MRTN-CT-2004-503369. IZ is supported by a PPARC Postdoctoral Fellowship.

References

[1] For a review of these issues see, e.g., R.H. Brandenberger, Inflationary cosmology: progress

and problems, hep-ph/9910410.

[2] G.D. Coughlan, W. Fischler, E.W. Kolb, S. Raby and G.G. Ross, Cosmological problems for

the Polonyi potential, Phys. Lett. B 131 (1983) 59;

J.R. Ellis, D.V. Nanopoulos and M. Quiros, On the axion, dilaton, Polonyi, gravitino and

shadow matter problems in supergravity and superstring models, Phys. Lett. B 174 (1986)

176;

B. de Carlos, J.A. Casas, F. Quevedo and E. Roulet, Model independent properties and

cosmological implications of the dilaton and moduli sectors of 4-d strings, Phys. Lett. B 318

(1993) 447 [hep-ph/9308325].

[3] R.H. Brandenberger and C. Vafa, Superstrings in the early Universe, Nucl. Phys. B 316

(1989) 391;

– 33 –

http://arxiv.org/abs/hep-ph/9910410
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB131%2C59
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB174%2C176
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB174%2C176
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB318%2C447
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB318%2C447
http://arxiv.org/abs/hep-ph/9308325
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB316%2C391
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB316%2C391


J
H
E
P
0
4
(
2
0
0
7
)
0
2
6

S. Alexander, R.H. Brandenberger and D. Easson, Brane gases in the early Universe, Phys.

Rev. D 62 (2000) 103509 [hep-th/0005212].

[4] G. Veneziano, Scale factor duality for classical and quantum strings, Phys. Lett. B 265

(1991) 287;

J.E. Lidsey, D. Wands and E.J. Copeland, Superstring cosmology, Phys. Rept. 337 (2000)

343 [hep-th/9909061].

[5] V.A. Rubakov and M.E. Shaposhnikov, Do we live inside a domain wall?, Phys. Lett. B 125

(1983) 136;

K. Akama, An early proposal of ’brane world’, Lect. Notes Phys. 176 (1982) 267

[hep-th/0001113];

M. Visser, An exotic class of Kaluza-Klein models, Phys. Lett. B 159 (1985) 22

[hep-th/9910093];

G.W. Gibbons and D.L. Wiltshire, Space-time as a membrane in higher dimensions, Nucl.

Phys. B 287 (1987) 717 [hep-th/0109093].

[6] A. Lukas, B.A. Ovrut, K.S. Stelle and D. Waldram, The Universe as a domain wall, Phys.

Rev. D 59 (1999) 086001 [hep-th/9803235];

I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, New dimensions at a

millimeter to a Fermi and superstrings at a TeV, Phys. Lett. B 436 (1998) 257

[hep-ph/9804398];

L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999)

4690 [hep-th/9906064];

V.A. Rubakov, Large and infinite extra dimensions: an introduction, Phys. Usp. 44 (2001)

871 [Usp. Fiz. Nauk 171 (2001) 913] [hep-ph/0104152] and references therein.

[7] A. Salam and E. Sezgin, Chiral compactification on minkowski x S2 of N = 2

Einstein-Maxwell supergravity in six-dimensions, Phys. Lett. B 147 (1984) 47.

[8] S.M. Carroll and M.M. Guica, Sidestepping the cosmological constant with football-shaped

extra dimensions, hep-th/0302067;

Y. Aghababaie, C.P. Burgess, S.L. Parameswaran and F. Quevedo, Towards a naturally small

cosmological constant from branes in 6D supergravity, Nucl. Phys. B 680 (2004) 389

[hep-th/0304256];

I. Navarro, Spheres, deficit angles and the cosmological constant, Class. and Quant. Grav. 20

(2003) 3603 [hep-th/0305014];

H.-P. Nilles, A. Papazoglou and G. Tasinato, Selftuning and its footprints, Nucl. Phys. B 677

(2004) 405 [hep-th/0309042].

[9] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv.

Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200].

[10] I.R. Klebanov and A.A. Tseytlin, Gravity duals of supersymmetric SU(N) × SU(n + m)

gauge theories, Nucl. Phys. B 578 (2000) 123 [hep-th/0002159].

[11] I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: duality cascades

and χSB-resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191].

[12] S.S. Gubser, AdS/CFT and gravity, Phys. Rev. D 63 (2001) 084017 [hep-th/9912001];

M.J. Duff and J.T. Liu, Complementarity of the Maldacena and Randall-Sundrum pictures,

Class. and Quant. Grav. 18 (2001) 3207 [Phys. Rev. Lett. 85 (2000) 2052] [hep-th/0003237].

– 34 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD62%2C103509
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD62%2C103509
http://arxiv.org/abs/hep-th/0005212
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB265%2C287
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB265%2C287
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C337%2C343
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C337%2C343
http://arxiv.org/abs/hep-th/9909061
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB125%2C136
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB125%2C136
http://arxiv.org/abs/hep-th/0001113
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB159%2C22
http://arxiv.org/abs/hep-th/9910093
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB287%2C717
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB287%2C717
http://arxiv.org/abs/hep-th/0109093
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD59%2C086001
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD59%2C086001
http://arxiv.org/abs/hep-th/9803235
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB436%2C257
http://arxiv.org/abs/hep-ph/9804398
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C83%2C4690
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C83%2C4690
http://arxiv.org/abs/hep-th/9906064
http://arxiv.org/abs/hep-ph/0104152
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB147%2C47
http://arxiv.org/abs/hep-th/0302067
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB680%2C389
http://arxiv.org/abs/hep-th/0304256
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C20%2C3603
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C20%2C3603
http://arxiv.org/abs/hep-th/0305014
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB677%2C405
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB677%2C405
http://arxiv.org/abs/hep-th/0309042
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C231
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C231
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IJTPB%2CB38%2C1113
http://arxiv.org/abs/hep-th/9711200
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB578%2C123
http://arxiv.org/abs/hep-th/0002159
http://jhep.sissa.it/stdsearch?paper=08%282000%29052
http://arxiv.org/abs/hep-th/0007191
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD63%2C084017
http://arxiv.org/abs/hep-th/9912001
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C18%2C3207
http://arxiv.org/abs/hep-th/0003237


J
H
E
P
0
4
(
2
0
0
7
)
0
2
6

[13] L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys.

Rev. Lett. 83 (1999) 3370 [hep-ph/9905221].

[14] S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string

compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097].

[15] S. Kachru, R. Kallosh, A. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev.

D 68 (2003) 046005 [hep-th/0301240].

[16] G.R. Dvali and S.H.H. Tye, Brane inflation, Phys. Lett. B 450 (1999) 72 [hep-ph/9812483];

C.P. Burgess et al., The inflationary brane-antibrane universe, JHEP 07 (2001) 047

[hep-th/0105204];

S.H.S. Alexander, Inflation from d – anti-d brane annihilation, Phys. Rev. D 65 (2002)

023507 [hep-th/0105032];

J. Garcia-Bellido, R. Rabadán and F. Zamora, Inflationary scenarios from branes at angles,

JHEP 01 (2002) 036 [hep-th/0112147];

N.T. Jones, H. Stoica and S.H.H. Tye, Brane interaction as the origin of inflation, JHEP 07

(2002) 051 [hep-th/0203163];

M. Gomez-Reino and I. Zavala, Recombination of intersecting D-branes and cosmological

inflation, JHEP 09 (2002) 020 [hep-th/0207278].

[17] S. Kachru et al., Towards inflation in string theory, JCAP 10 (2003) 013 [hep-th/0308055].

[18] E. Silverstein and D. Tong, Scalar speed limits and cosmology: acceleration from d-

cceleration, Phys. Rev. D 70 (2004) 103505 [hep-th/0310221];

M. Alishahiha, E. Silverstein and D. Tong, DBI in the sky, Phys. Rev. D 70 (2004) 123505

[hep-th/0404084].

[19] H.A. Chamblin and H.S. Reall, Dynamic dilatonic domain walls, Nucl. Phys. B 562 (1999)

133 [hep-th/9903225];

P. Kraus, Dynamics of anti-de Sitter domain walls, JHEP 12 (1999) 011 [hep-th/9910149].

[20] P. Bowcock, C. Charmousis and R. Gregory, General brane cosmologies and their global

spacetime structure, Class. and Quant. Grav. 17 (2000) 4745 [hep-th/0007177].

[21] P. Binetruy, C. Deffayet and D. Langlois, Non-conventional cosmology from a

brane-Universe, Nucl. Phys. B 565 (2000) 269 [hep-th/9905012];
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